In conventional steam power plants, residual water must be separated from power-generating steam. This process limits efficiency, and in early generation power plants, could be volatile, leading to explosions.
In the 1920s, Mark Benson realized that the risk could be reduced and power plants could be more efficient if water and steam could cohabitate. This cohabitation could be achieved by bringing water to a supercritical state, or when a fluid exists as both a liquid and gas at the same time.
05. Nov. 2018
User Research
Energy
Computational Fluid Dynamics
Hybrid Computing
Alle Nachrichten