

EXCELLERAT: paving the way to the evolution towards Exascale

Amgad Dessoky

Technical Manager, High-Performance Computing Center Stuttgart (HLRS)

Agenda

- Overview
- Objectives of EXCELLERAT
- EXCELLERAT approach
- EXCELLERAT use cases & requirements
- Samples of technical progress
- Service Portfolio Service implementation
- Outlook

Overview

- EXCELLERAT The European Centre of Excellence for Engineering Applications
- Horizon 2020 The EU Framework Programme for Research and Innovation
- 13 partners
- Funding programme: H2020-EU.1.4.1.3. Development, deployment and operation ICT-based e-infrastructures
- Subject: H2020-INFRAEDI-2018-1 Centres of Excellence on HPC
- Start: 01.12.2018
- Duration: 3 years

Objectives of EXCELLERAT

What is EXCELLERAT and why do we need it?

EXCELLERAT Approach

- Using Reference Applications to setup the frame of the centre (and its services)
- Extension of the applications by integrating external entities through the concept of interest groups (leading to smaller satellite activities)

EXCELLERAT Interest Groups:

- Industrial End Users
- Code Developers/ISVs
- Scientific Experts
- Technology Providers

Nek5000

Spectral element discretisation

Suitable for direct numerical simulation (DNS) Aerospace - Flow around aerofoil with rounded wing tip

Aerospace - High fidelity simulation of rotating parts

Alya

Finite Element Method (FEM)

Multi-Physics

Automotive/ Aerospace - Emission prediction of internal combustion and gas turbine engines

Aerospace - Active flow control of aircraft aerodynamics including synthetic jet actuators

Transport systems - Coupled simulation of fluid and structure mechanics for fatigue and fracture

AVBP

Safety applications - Explosion in confined spaces

FEM type low-dissipation Taylor-Galerkin Large Eddy Simulation

(LES)

Aerospace and energy - Combustion instabilities and emission prediction

TPLS

Chemicals and Energy - Two-Phase vertical pipe flow

DNS Multiphase flows

FEniCS

Calculation platform for automatic solution of partial differential equations

Aerospace and Automotive - Adjoint optimisation in external aerodynamics shape optimisation

CODA

Finite Volume Method (FV)
Discontinuous Galerkin
Method (DG)

Aerospace - Design process and simulation of full equipped aero planes

Aerospace – computational fluid dynamics (CFD) coupling with computational structural mechanics including elastic effects

CODA

Focus on Engineering Applications' Challenges

Numerical Simulation / Codes: Discretisation methods, Numerical methods, Parallel performance.

Pre- / Post-Processing: Meshing algorithms, Efficient input/output, In-Situ visualisation.

Simulation Workflow & Result Feedback: Data transfer, Data management, Usability, External optimisation processes.

Samples of technical progress

AVBP

EXCELLERAT ported AVBP to AMD rome architecture evaluated up to 130k cores with almost 90% ideal scaling.

Alya

The project scaled Alya up to 96,000 cores on 2 billion cells compared to 25,000 core on 345 million cells before EXCELLERAT.

The CoF extended AVBP to use GPUs under OpenACC:

excellent strong scaling up to 32 GPUs using a static mesh (new implementation).

EXCELLERAT achieved a well-balanced co-execution of Alya using both the CPUs and GPUs simultaneously, 23% faster than using only the GPUs (new implementation).

Samples of technical progress

NEK5000

Adaptive mesh refinement is implemented, which improves computational efficiency in rototcraft off body grid by 50-70% of total cell (new implementation).

CODA

EXCELLERAT analysed the mesh partitioning of CODA, achieving up to **30% better load balance** and **55% faster runtime** with the appropriate mesh partitioning method (new implementation).

EXCELLERAT scaled efficient hybrid MPI+OpenMP to **32k cores** even for small meshes with **60% efficiency** (new implementation).

Service Portfolio – Service implementation

Service Portfolio – Service implementation

Outlook

- EXCELLERAT is the first Centre of Excellence in Engineering science simulations.
- EXCELLERAT has built from the need of having Exascale technology.
- In EXCELLERAT we strive to enable the Exascale for the full simulation workflow.
- Six reference applications were selected that are supported by the community.
- The services schemes are driven from the selected use-cases and the user requirements.
- Widen the aspect of the current service portfolio towards further Engineering applications which are not included in the use-cases.

15

