SODALITE: Software-Defined Execution and Optimization of In-Silico Clinical Trials in HPC with SODALITE Platform

Kamil Tokmakov, Dr. Ralf Schneider
HLRS

The International Conference for High Performance Computing, Networking, Storage, and Analysis (2020)

17.11.2020
SC20
Some spinal conditions (e.g. disk displacement or prolapse) can only be treated *operatively*. A common treatment is mono- or bisegmental *fusion of the lumbar spine*.

A *screw-rod fixation bone implant system* is used to fix parts of the lumbar spine.

Biomechanical implant *development* is done on an empirical basis.

Selection of type, size and placement position is done *based on experience*.

Implant optimization is complicated.
Clinical trials with “real” patients are time-consuming and expensive.
Every patient is different and results cannot be generalized.
Virtual clinical trials reproduce clinical trials by means of simulation.
- Simulations are applied to virtual patient cohorts.
- The UC represents research to advance this frontier.
Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scientific workflow, composed of multiple integrated components, with efficient data processing over heterogeneous infrastructure.</td>
<td></td>
</tr>
<tr>
<td>Efficient development and failure management. During a development cycle, a failed simulation should be debugged and restarted from the failed component, not running the whole chain again.</td>
<td></td>
</tr>
<tr>
<td>Data processing tasks are not finally defined and may change and get more complicated as the methodology of clinical virtual trials evolves: e.g. new data analytics component are likely to be introduced.</td>
<td></td>
</tr>
<tr>
<td>Efficient uncertainty quantification (currently done manually), which is not only needed in this special case but is widely sought after nowadays.</td>
<td></td>
</tr>
<tr>
<td>Evaluation in terms of execution time/cost/power over various infrastructures and computing centers.</td>
<td></td>
</tr>
</tbody>
</table>
Current methodology of in-silico clinical trials in biomechanical simulations is not productive:

- Requires **effectiveness** in deployment, management and adaption to different IT-infrastructures (SC, Cloud, HW Heterogeneity)
- Requires **ease-of-use** for end users (medical device manufacturers or medical research institutes) and **reduced effort** of the developers.

→ **DevOps** practices shall be adopted: IaC-based abstraction, flexibility, portability, reduced cost and effort
The realm of DevOps tools
Towards standard Infrastructure-as-Code (IaC)

OASIS TOSCA (Topology and Orchestration Specification for Cloud Applications) standard: quite complex (steep learning curve), no optimisation
SODALITE provides tools to enable simpler and faster development of IaC and deployment and execution of heterogeneous apps in HPC, Cloud & SW defined computing environments.

Particular focus of SODALITE is on performance, quality, and manageability of the applications on the underlying infrastructures.
What SODALITE offers - a selection

- Smart modeling
- Design-time application optimization
- Automated resource discovery (out-of-scope)
- Runtime optimization and control (out-of-scope)
Smart modeling

• Smart creation of deployment models through a textual and graphical DSL
• Editing is supported by an ontology-based reasoning mechanism that
 • Checks the semantic validity of a model
 • E.g., it signals a problem if a requirement of a source node is not satisfied by a capability of the target node
 • Enables the development of decision making tools, e.g.:
 • context-aware assistance of user at design-time
 • model enrichment taking into account domain knowledge

Two interacting hosts must be connected through a network

Schema requirement is not compatible with Tomcat capability
IDE demo: https://www.youtube.com/watch?v=8YC11JFSWC4
density-mapping-job-config:
 type: sodalite.nodes.hpc.job.torque.preconfigured
 properties:
 name: "density-mapping"
 script: get_input: density-mapping-script
 workspace: "~/workflow"
 env:
 SINGULARITY_DIR: "/home/kamil/images"
 requirements:
 host:
 node: hpc-wm-torque

density-mapping-job:
 type: sodalite.nodes.hpc.job.torque
 requirements:
 host:
 node: hpc-wm-torque
 configured_job:
 node: density-mapping-job-config

probabilistic-mapping-job:
 type: sodalite.nodes.hpc.job.torque
 requirements:
 host:
 node: hpc-wm-torque
 configured_job:
 node: probabilistic-mapping-job-config
 dependency:
 node: density-mapping-job-result

Full description can be found in IDE GitHub [here](#)
Application optimization

Support to design time application optimization for HPC

SC20
Optimising application deployment

- Use an optimised library / environment
- Build application with optimal or target specific compiler (flags/SETTINGS)
- Flexibly constrain/fit to available resources
- Scale application to multi nodes/GPUs
- Custom Code changes or optimisation settings
- Data staging in storage / memory
- Autotune application parameters
- Autotune application build
MODAK API example

Job parameters - converts into PBS or Slurm job script parameters

Parameters of how to build and execute application

Response:

optimised container image

job script

Optimisation parameters - specifying e.g. application type "hpc", parallelisation, CPU architecture, autotuning
MODAK generated job script

```bash
#PBS -S /bin/bash
#PBS -N solver
#PBS -l walltime=1:00:00
#PBS -l nodes=2:ppn=40
#PBS -l procs=40
#PBS -o file.out
#PBS -e file.err
#PBS -j oe
#PBS -m n
#PBS -M tokmakov@hlrs.de

cd $PBS_O_WORKDIR

export PATH=$PBS_O_WORKDIR:$PATH

file=solver_20201116190135_tune.sh

if [ -f $file ]; then rm $file; fi


chmod 755 solver_20201116190135_tune.sh

singularity exec $SINGULARITY_DIR/mpich_ub1804_cuda101_mpi314_gnugprof.sif solver_20201116190135_tune.sh

export OMP_NUM_THREADS=1

mpirun -np 40 singularity exec $SINGULARITY_DIR/mpich_ub1804_cuda101_mpi314_gnugprof.sif \
    $(ASTER_ROOT)/14.4/bin/aster $(ASTER_ROOT)/14.4/lib/aster/Execution/E_SUPERV.py -commandes fort.1 --num_job=1432 --memjeveux=8192.0 --tpmax=3000.0
```

SC20
Optimisation abstraction for Traditional HPC (MPI)
Optimisation abstraction for AI Training
The SODALITE Deployment

- Operation Manager/ Application Ops Expert
- Complex App
- IDE
 - Semantic Suggestions
 - Semantic knowledge base
- Infrastructure Manager/ Resource Expert
- Abstract Application Model
- Abstract Resource Model
- IaC Builder
- TOSCA blueprint
- Application Optimisation
 - Optimised application
- Blueprint Optimisation
 - Optimised blueprint
- Deploy
The SODALITE Runtime

- Running Application
 - HPC
 - Cloud
 - Edge
- Monitoring data
- Infrastructure
- Optimisation loop
- Runtime Optimisation
- TOSCA blueprint
- Optimised Blueprint
- Deploy
Optimisation results for AI training and HPC deployments with graph compilers and Singularity containers

• For **AI training**
 • 17% speedup using custom built optimised containers
 • up to a 30% speedup using graph compilers.

• For traditional **HPC** the work is ongoing (Solver optimisation)
 • Performance with singularity **containers** comparable to native build (up to 6% speedup)

• Presented talk at *Supercomputing Frontiers*, Warsaw (March 23 – 25, 2020)
• Presented poster in *ISC-HPC* (June 22 – 25, 2020), Frankfurt
• Paper on *Optimising AI Training Deployments using Graph Compilers and Containers* accepted at 2020 IEEE High Performance Extreme Computing Conference (HPEC) 22 - 24 September 2020
• Submitted paper on *MODAK – an Optimiser for HPC and AI training deployments in software defined infrastructures* to The 2020 International Conference on High Performance Computing & Simulation (HPCS 2020)
SODALITE outcome already helps Virtual Clinical Trials in biomechanical simulations in moving the process towards production-like environments:

+ **Increase the effectiveness of component deployment**
 → assisted via IDE, automated via orchestrator
+ **Ease the adaptation and optimisation for different hardware/software platforms**
 → MODAK and resource models provided abstraction
+ **Lower the efforts for component integration**
 → incorporated components and dependencies (container images, data, artifacts) into the workflow
+ **Lower the efforts for data management**
 → data management as part of workflow
Links

Website - www.sodalite.eu

GitHub Page - SODALITE-EU

Docker Hub - sodaliteh2020

YouTube Channel - Sodalite H2020

Linkedin Page - sodalite-eu

Twitter - @SODALITESW
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825480.
Backup slides
Automated discovery of resources

- Automatic discovery and modeling of new infrastructural resources into IaC

```
sodalite.nodes.hpc.resources.torque:
  derived_from: tosca.nodes.Compute
  properties:
    name:
      type: string
      default: hlrs_testbed
    total_gpus:
      type: integer
      default: 5
    total_nodes:
      type: integer
      default: 5
    total_cores:
      type: integer
      default: 200
```
Runtime deployment optimization

Deployment Option Discoverer
- Find Resource Options
- Find Deployment Alternatives

SODALITE Knowledge Base

Deployment Refactorer
- Performance Predictor
 - Rulebase
- Deploy New Variant

Orchestrator
- Redeploy (Diff)

Application
- Know about
- Infrastructure

Node Manager
- Push/Pull

Monitoring System
- Events, Alerts, Metrics
- Scale up/down Resources