Dr. Taras Petrenko

Wissenschaftlicher Mitarbeiter

Dr. Taras Petrenko ist wissenschaftlicher Mitarbeiter im Bereich Forschungsdatenmanagement. Seine aktuelle Arbeit konzentriert sich hauptsächlich auf die Entwicklung von Werkzeugen und Metadaten-Ontologien im Zusammenhang mit der Nationalen Forschungsdaten-Infrastruktur für katalysebezogene Wissenschaften (NFDI4Cat).

Dr. Petrenko hat seinen Doktortitel in Festkörperphysik an dem V.Ye. Laskarjow Institut für Halbleiterphysik in Kyiv absolviert. Er verfügt über langjährige Erfahrung in der Quantenchemie sowie in verschiedenen Bereichen der experimentellen und theoretischen Spektroskopie.

Publikationen

[ 2021 ] [ 2020 ] [ 2018 ] [ 2017 ] [ 2016 ] [ 2015 ] [ 2012 ] [ 2011 ] [ 2010 ] [ 2009 ] [ 2008 ] [ 2007 ] [ 2006 ] [ 2005 ] [ 2002 ] [ 2001 ] [ 2000 ] [ 1998 ]

2021 [ nach oben ]

  • 1.
    Mathea, T., Petrenko, T., Rauhut, G.: VCI Calculations Based on Canonical and Localized Normal Coordinates for Non-Abelian Molecules: Accurate Assignment of the Vibrational Overtones of Allene. The Journal of Physical Chemistry A. 125, 990–998 (2021).
     

2020 [ nach oben ]

  • 1.
    Petrenko, T., Rauhut, G.: Account of non-Condon effects in time-independent Raman wavefunction theory: Calculation of the S1 ← S0 vibronic absorption spectrum of formaldehyde. J. Chem. Phys. 152, 114109- (2020).
     
  • 2.
    Petrenko, T.L., Bryksa, V.P., Petrenko, T.T.: Bistable behavior of the nitrogen impurity in SiC nanoclusters. Nanoscale. 12, 11536–11555 (2020).
     
  • 3.
    Petrenko, T.T., Rauhut, G.: Modal optimisation within the time-independent eigenstate-free Raman wavefunction formalism. Mol. Phys. 118, e1643047 (2020).
     

2018 [ nach oben ]

  • 1.
    Petrenko, T., Rauhut, G.: Refined analysis of the X̃ 2A2←X̃ 1A1 photoelectron spectrum of furan. J. Chem. Phys. 148, 054306- (2018).
     

2017 [ nach oben ]

  • 1.
    Petrenko, T., Rauhut, G.: A General Approach for Calculating Strongly Anharmonic Vibronic Spectra with a High Density of States: The X~2B1 \($\leftarrow$\) X~1A1 Photoelectron Spectrum of Difluoromethane. Journal of Chemical Theory and Computation. 13, 5515–5527 (2017).
     
  • 2.
    Petrenko, T., Rauhut, G.: A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems. J. Chem. Phys. 146, 124101- (2017).
     

2016 [ nach oben ]

  • 1.
    Petrenko, T.T., Petrenko, T.L.: Density functional theory study of the shallow boron impurity in \($3C$\)-SiC and comparison with experimental data. Phys. Rev. B. 93, 165203 (2016).
     

2015 [ nach oben ]

  • 1.
    Bykov, D., Petrenko, T., Izs’ak, R., Kossmann, S., Becker, U., Valeev, E., Neese, F.: Efficient implementation of the analytic second derivatives of HartreetextendashFock and hybrid DFT energies: a detailed analysis of different approximations. Molecular Physics. 113, 1961–1977 (2015).
     
  • 2.
    Ye, S., Xue, G., Krivokapic, I., Petrenko, T., Bill, E., Que Jr, L., Neese, F.: Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(iv) complexes. Chem. Sci. 6, 2909–2921 (2015).
     
  • 3.
    Petrenko, T., Rauhut, G.: Time-independent eigenstate-free calculation of vibronic spectra beyond the harmonic approximation. J. Chem. Phys. 143, 234106- (2015).
     

2012 [ nach oben ]

  • 1.
    DeBeer, S., van Gastel, M., Bill, E., Ye, S., Petrenko, T., Pantazis, D.A., Neese, F.: 4.5 Challenges in Molecular Energy Research. Gehalten auf der (2012).
     
  • 2.
    Petrenko, T., Neese, F.: Efficient and automatic calculation of optical band shapes and resonance Raman spectra for larger molecules within the independent mode displaced harmonic oscillator model. J. Chem. Phys. 137, 234107- (2012).
     
  • 3.
    Shafaat, H.S., Weber, K., Petrenko, T., Neese, F., Lubitz, W.: Key Hydride Vibrational Modes in [NiFe] Hydrogenase Model Compounds Studied by Resonance Raman Spectroscopy and Density Functional Calculations. Inorganic Chemistry. 51, 11787–11797 (2012).
     
  • 4.
    Gallo, E., Bonino, F., Swarbrick, J.C., Petrenko, T., Piovano, A., Bordiga, S., Gianolio, D., Groppo, E., Neese, F., Lamberti, C., Glatzel, P.: Preference towards Five-Coordination in Ti Silicalite-1 upon Molecular Adsorption. ChemPhysChem. 14, 79–83 (2012).
     

2011 [ nach oben ]

  • 1.
    Tomson, N.C., Crimmin, M.R., Petrenko, T., Rosebrugh, L.E., Sproules, S., Boyd, W.C., Bergman, R.G., DeBeer, S., Toste, F.D., Wieghardt, K.: A Step beyond the FelthamtextendashEnemark Notation: Spectroscopic and Correlatedab InitioComputational Support for an Antiferromagnetically Coupled M(II)\textendash(NO)-Description of Tp\astM(NO) (M = Co, Ni). Journal of the American Chemical Society. 133, 18785–18801 (2011).
     
  • 2.
    Petrenko, T., Kossmann, S., Neese, F.: Efficient time-dependent density functional theory approximations for hybrid density functionals: Analytical gradients and parallelization. J. Chem. Phys. 134, 054116- (2011).
     
  • 3.
    Neese, F., Petrenko, T.: Quantum Chemistry and M"ossbauer Spectroscopy. M"ossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications. S. 137–199. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).
     

2010 [ nach oben ]

  • 1.
    Lee, N., Petrenko, T., Bergmann, U., Neese, F., DeBeer, S.: Probing Valence Orbital Composition with Iron K\($\upbeta$\) X-ray Emission Spectroscopy. Journal of the American Chemical Society. 132, 9715–9727 (2010).
     

2009 [ nach oben ]

  • 1.
    Pantazis, D., Orio, M., Petrenko, T., Zein, S., Bill, E., Lubitz, W., Messinger, J., Neese, F.: A New Quantum Chemical Approach to the Magnetic Properties of Oligonuclear Transition-Metal Complexes: Application to a Model for the Tetranuclear Manganese Cluster of Photosystemhspace0.25emII. Chemistry - A European Journal. 15, 5108–5123 (2009).
     
  • 2.
    Orio, M., Pantazis, D.A., Petrenko, T., Neese, F.: Magnetic and Spectroscopic Properties of Mixed Valence Manganese(III,IV) Dimers: A Systematic Study Using Broken Symmetry Density Functional Theory. Inorganic Chemistry. 48, 7251–7260 (2009).
     
  • 3.
    Petrenko, T., Krylova, O., Neese, F., M, S.: Optical absorption and emission properties of rubrene: Insight from a combined experimental and theoretical study. (2009).
     
  • 4.
    Benedito, F.L., Petrenko, T., Bill, E., Weyhermüller, T., Wieghardt, K.: Square Planar Bis\($\lbrace$\)3,6-bis(trimethylsilyl)benzene-1,2-dithiolato\($\rbrace$\)metal Complexes of CrII, CoIII, and RhII: An Experimental and Density Functional Theoretical Study. Inorganic Chemistry. 48, 10913–10925 (2009).
     
  • 5.
    Pantazis, D.A., Orio, M., Petrenko, T., Zein, S., Lubitz, W., Messinger, J., Neese, F.: Structure of the oxygen-evolving complex of photosystem II: information on the S2 state through quantum chemical calculation of its magnetic properties. Phys. Chem. Chem. Phys. 11, 6788–6798 (2009).
     

2008 [ nach oben ]

  • 1.
    George, S.D., Petrenko, T., Neese, F.: Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A. 112, 12936–12943 (2008).
     
  • 2.
    DeBeer George, S., Petrenko, T., Neese, F.: Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra. Inorganica Chimica Acta. 361, 965–972 (2008).
     

2007 [ nach oben ]

  • 1.
    Neese, F., Petrenko, T., Ganyushin, D., Olbrich, G.: Advanced aspects of ab initio theoretical optical spectroscopy of transition metal complexes: Multiplets, spin-orbit coupling and resonance Raman intensities. Coordination Chemistry Reviews. 251, 288–327 (2007).
     
  • 2.
    Petrenko, T., Neese, F.: Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J. Chem. Phys. 127, 164319- (2007).
     
  • 3.
    Petrenko, T., George, S.D., Aliaga-Alcalde, N., Bill, E., Mienert, B., Xiao, Y., Guo, Y., Sturhahn, W., Cramer, S.P., Wieghardt, K., Neese, F.: Characterization of a Genuine Iron(V)-Nitrido Species by Nuclear Resonant Vibrational Spectroscopy Coupled to Density Functional Calculations. Journal of the American Chemical Society. 129, 11053–11060 (2007).
     
  • 4.
    Petrenko, T., Sturhahn, W., Neese, F.: First-principles calculation of nuclear resonance vibrational spectra. Hyperfine Interactions. 175, 165–174 (2007).
     
  • 5.
    Ray, K., Petrenko, T., Wieghardt, K., Neese, F.: Joint spectroscopic and theoretical investigations of transition metal complexes involving non-innocent ligands. Dalton Trans. 1552–1566 (2007).
     

2006 [ nach oben ]

  • 1.
    Petrenko, T., Ray, K., Wieghardt, K.E., Neese, F.: Vibrational Markers for the Open-Shell Character of Transition Metal Bis-dithiolenes:~ An Infrared, Resonance Raman, and Quantum Chemical Study. Journal of the American Chemical Society. 128, 4422–4436 (2006).
     

2005 [ nach oben ]

  • 1.
    Bratus’, V.Y., Petrenko, T.T., Okulov, S.M., Petrenko, T.L.: Positively charged carbon vacancy in three inequivalent lattice sites of \($6H\text\ensuremath-\mathrmSi\mathrmC$\): Combined EPR and density functional theory study. Phys. Rev. B. 71, 125202 (2005).
     

2002 [ nach oben ]

  • 1.
    Petrenko, T.T., Petrenko, T.L., Bratus’, V.Y.: A negatively charged silicon vacancy in SiC: Spin polarization effects. Physics of the Solid State. 44, 831–836 (2002).
     
  • 2.
    Virko, S., Petrenko, T., Yaremko, A., Wysokiński, R., Michalska, D.: Density functional and ab initio studies of the molecular structures and vibrational spectra of metal triiodides, MI3 (M=As, Sb, Bi). Journal of Molecular Structure: THEOCHEM. 582, 137–142 (2002).
     
  • 3.
    Petrenko, T.T., Petrenko, T.L., Bratus, V.Y.: The carbon 100 split interstitial in SiC. (2002).
     

2001 [ nach oben ]

  • 1.
    Petrenko, T., Petrenko, T., Bratus, V., Monge, J.: Calculation of hyperfine parameters of positively charged carbon vacancy in SiC. Physica B: Condensed Matter. 308-310, 637–640 (2001).
     
  • 2.
    Bratus, V., Makeeva, I., Okulov, S., Petrenko, T., Petrenko, T., von Bardeleben, H.J.: EPR Study of Carbon Vacancy-Related Defects in Electron-Irradiated 6H-SiC. Silicon Carbide and Related Materials 2000. S. 517–520. Trans Tech Publications Ltd (2001).
     
  • 3.
    Bratus, V., Makeeva, I., Okulov, S., Petrenko, T., Petrenko, T., von Bardeleben, H.: Positively charged carbon vacancy in 6H–SiC: EPR study. Physica B: Condensed Matter. 308-310, 621–624 (2001).
     
  • 4.
    Bratus’, V.Y., Yukhimchuk, V.A., Berezhinsky, L.I., Valakh, M.Y., Vorona, I.P., Indutnyi, I.Z., Petrenko, T.T., Shepeliavyi, P.E., Yanchuk, I.B.: Structural transformations and silicon nanocrystallite formation in SiOx films. Semiconductors. 35, 821–826 (2001).
     
  • 5.
    Petrenko, T., Petrenko, T., Bratus’, V., Monge, J.: Symmetry, spin state and hyperfine parameters of vacancies in cubic SiC. Applied Surface Science. 184, 273–277 (2001).
     
  • 6.
    Bratus’, V., Petrenko, T., von Bardeleben, H., Kalinina, E., Hallén, A.: Vacancy-related defects in ion-beam and electron irradiated 6H–SiC. Applied Surface Science. 184, 229–236 (2001).
     

2000 [ nach oben ]

  • 1.
    Vorona, I., Ishchenko, S., Okulov, S., Petrenko, T.: New possibility of retrospective EPR dosimetry. emiconductor Physics, Quantum Electronics & Optoelectronic. 3, 219–222 (2000).
     

1998 [ nach oben ]

  • 1.
    Bratus’, V., Valakh, M., Vorona, I., Petrenko, T., Yukhimchuk, V., Hemment, P., Komoda, T.: Photoluminescence and paramagnetic defects in silicon-implanted silicon dioxide layers. Journal of Luminescence. 80, 269–273 (1998).